

Thank you for your information. My name is Toshiyuki Kawaharamura. I belong to Institute for Nanotechnology in Kochi University of Technology. Today's topic is fabrication of high quality AlOx thin films by mist CVD.

ご紹介ありがとうございます。高知工科大学 ナノテクノロジー研究所の 川原村です。この発表では、まずはミストCVDについてお話します。

Aluminum oxide has wide band gap, high breakdown field, high dielectric constant, and high thermal stability. And Al_2O_3 prevents a penetration of water or air. Therefore, Al_2O_3 is a promising material for high- κ gate insulator and passivation film.

Al₂O₃は、誘電率が高く、熱的安定性の優れた材料である。また、水や空気の浸透を防ぎます。その為、アルミナは、高誘電(High-k)材料や、デバイスのパッシベーション膜として期待されています。

AlO _x thin film deposition method						
Method	precursor	Typical growth temp. (°C)	Growth rate (nm/min)	pressure	Anneal process Time: 1-2h Temp.: 350-1000°C	Ref.
Sputtering	AI, AI_2O_3	RT-300	0.2-100	0.1-10 Pa	0	1-5
MOCVD	AI(CH ₃) ₃ , AICI ₃	100-450	≈ 1-10		0	6
PECVD	AI(CH ₃) ₃ , AICI ₃	100-300	≈ 1-10	≈ 10 Pa	0	7
ALD	AI(CH ₃) ₃ , AICI ₃	100-450	≈ 0.5-5	≈100 Pa	0	8-12
Sol-gel	AICI ₃	200	low	1 atm	0	13,14
Spray	Al(acac) ₃	400-650	1-10	1 atm	(×)	15
Mist CVD	Al(acac) ₃	300-450	10-50	1 atm	(×)	16
1. M. Voigt, Mater. Sci. Eng. B 109, 99 (2004) 9. M.L. Huang, Appl. Phys. Left. 87, 252104 (2005). 2. J.M. Andersson, Thin Solid Films 513, 57 (2006). 10. C.J. Edwardson, J. Appl. Phys. 111, 053515 (2012). 3. M.K. Smit, Thin Solid Films 138, 171 (1986). 10. C.J. Edwardson, J. Appl. Phys. 111, 053515 (2012). 4. R.S. Nowicki, J. Vac. Sci. Technol. 14, 127 (1997). 12. M.D. Groner, Chem. Mater. 16, 639 (2004). 5. G.Este, J. Vac. Sci. Technol. A 2, 1238 (1984). 13. R. Rogojan, U.P.B. Sci. Bull, Series B 73, 67 (2011). 6. D.M. Frigo, Chem. Mater. 6, 190 (1994).¥ 14. C. Avis, J. Mater. Chem. 21, 10649 (2011) 7. C.E. Chryssou, Appl. Phys. A 65, 469 (1997). 15. J.G Mendoza, J. Mater. Sci.: Mater. Electr., 15 (2004)629. 8. T. Suntola, in Handbook of Crystal Growth 3, p.601 16. T. Kawaharamura, AIP Advances 3, (2013) 032135.						
Several deposition processes have been employed for AIO_x thin film deposition. In these reports, annealing process is employed in order to obtain high quality AIO_x film. We have tried high quality AIO_x thin film by mist CVD.						
KOCHI UNIVERSITY OF TECHNOLOGY Symp. H M4-4 3						3

Several deposition processes, such as sputtering, metal organic chemical vapor deposition (MOCVD), plasma enhanced chemical vapor deposition (PECVD), and atomic layer deposition (ALD) have been employed for AlO_x thin film deposition. Also AlO_x thin film deposited by atmospheric pressure process, such as sol-gel and spray, are reported. Anyway, in these reports, annealing process is employed in order to obtain high quality AlO_x thin film.

Then, we have tried high quality AlO_x thin film by mist CVD.

Al₂O₃薄膜の作製手法は、スパッタリングや、MOCVDやPECVD、ALD法などと多数 報告されている。アルミナは安定である為スパッタしにくい材料と言われている。CVD やALD等では、トリメチルアルミという活性な材料が使われている。また、スプレーや ゾルゲル法等の大気圧手法でも多数報告されている。これらのアルミナはアニールなど をすることにより高品質な薄膜を作製する事に成功している。

そこで、我々が開発しているミストCVD法でも高品質なAlOx薄膜が作製出来ないか とこころみた。

Mist deposition is one of the functional thin film fabrication techniques under atmospheric pressure. This figure is schematic image of mist deposition. In mist deposition system, there are two parts, supply unit and reaction unit. Supply unit consists of a solution tank and a few ultrasonic transducers. Reaction unit consists of a reactor chamber and a heater.

First, we prepare the precursor solution and it is misted by ultrasonic transducers in the supply unit. And next, the mist is transferred from the supply unit into the reaction unit with a carrier gas. At last, thin films or particles are fabricated by the thermal decomposition in the reaction unit. If you want to know the detail of mist CVD you can join tomorrow this session in Symposium E.

In this time, fine channel type mist CVD system was employed to grow AlO_x thin films.

ミストデポジション、ミストCVDは、大気圧下で薄膜を作製する為の技術の 一つです。こちらに示す図は、ミストデポジションの概略図です。一般的なミ ストデポジションシステムには二つのパートがあります。供給部と反応部です。 供給部は、溶液タンクと超音波振動子から構成されます。反応部は、反応炉と ヒータから構成されます。

まず、原料溶液を用意し、超音波エネルギーを用いてミスト化します。キャ リアガスによって原料ミストを供給部から反応部へ搬送します。そして、薄膜 や粒子を熱分解などによって作製します。本手法に関しては、Symp. Hを参考に してください。

本実験では、この手法を利用してアルミナ薄膜を作製しました。

In the case of ZnO thin films grown by mist CVD, vacancy peak can not be seen, because the reactor is occupied with high active oxide such as steam, and the vacancy is repaired. This is the reason why we want to use this method.

This is the schematic image of fine channel type mist CVD system. This is the supplier and this is the fine channel reactor, which gives sources a driving force to the substrate.

The growth conditions of AlO_x thin film are shown in this sheet. Aluminum acetylacetonate was used as precursor solute. And mixture of distilled water and methanol was used as a solvent. The concentration of precursor solution is 0.02 mol/L and substrate temperature is from 300°C to 450°C. And carrier gas is air. AlO_x thin films were grown at thickness around 50 nm on high-doped p-type Si (p⁺-Si) substrate in order to evaluate breakdown field and were grown at thickness around 200 nm on low-doped p-type Si (p⁻-Si) substrate in order to evaluate FT-IR and capacitance vs. voltage (C-V).

アルミナの作製システムと条件をこちらに示す。装置は高知工科大学にあるファイン チャネル式ミストCVDシステムを用いた。原料には、アセチルアセトナト化合物を用い、 溶媒は、水アルコールの混合溶媒を用いた。溶液濃度は、0.02 mol/Lで、作製温度は、 300℃から450℃であった。膜厚は、破壊電界強度を求める為に50 nm、CV特性やFT-IR を評価する為に、200 nmとしました。

First, surface of AlO_x thin films are evaluated by AFM. In these figures the image size is 2 μ m square. As you can see, comparatively smooth thin film was obtained at every temperature. The roughness was smoothing with decreasing temperature. Pin holes were not seen from AFM image.

まず、作製したアルミナ薄膜の表面をAFMを用いて評価しました。こちらの 図は、すべて2um角のSi基板上のアルミナ薄膜のAFM像です。どの温度領域でも 比較的平坦な薄膜が得られていることが分かります。低温ほどラフネスが良く なる傾向が見られ、AFM像からはピンホールなどは見られませんでした。

The result of breakdown field and dielectric constant of AlO_x thin films are shown in these figures. The AlO_x thin films grown at temperatures above 400°C exhibited the breakdown field of about 6 MV/cm and the static dielectric constant of about 6. However the breakdown field and the dynamic dielectric constant of the AlO_x thin films fall dramatically at temperatures below 375°C. Such a result was seen, although the composition ratio is almost stoichiometry from XPS measurement.

こちらが、破壊電界強度と、誘電率を評価した結果です。400℃以上で6MV/cmを超 える破壊電界強度、6程度の静的誘電率が見られました。しかしながら、破壊電界強度 と、動的誘電率は、375℃以下で急激に減少しています。AlO_x薄膜のAlとOの組成比は どの温度域でも2:3でしたが、このような結果を得られました。

Therefore, binding properties in the films were evaluated from FT-IR spectra. In the FT-IR measurements, samples were kept in the vacuum state to avoid influences of moisture and carbon dioxide. The typical spectra of AlO_x thin films are seen in this figure. A broad band are assigned to the stretching mode of octahedral (AlO_6) and tetrahedral (AlO_4). Comparing the AlO_x thin films grown at temperatures above 400°C and below 350°C, differences in the broad peak at around 3300 cm⁻¹ assigned to stretching vibrations of OH bonding and/or H₂O included in the thin film can be seen. The OH bonding included in the AlO_x thin film can be suggested as one factor for the degradation of E_{BD} .

FT-IRによって薄膜中の結合状態を評価してみました。FT-IR測定では、湿気や二酸化 炭素の影響を避ける為、サンプルを真空中で評価しました。測定結果には、典型的な AIO_x薄膜のピークが見られます。ブロードなピークは、AIO₆とAIO₄の伸縮モードを示し ています。400°C以上で作製したAIO_x薄膜と350°C以下で作製したAIO_x薄膜を比較すると、 OH基や薄膜中に含まれている水分を示す、3300cm⁻¹付近のブロードなピークの違いが見 られます。これが破壊電界強度及び動的誘電率の急激な減少の理由だと考えられます。 また、いずれにしても、たとえ400°C以上で作製したAIO_x薄膜であっても、破壊電界 強度及び誘電率は、バルクの値に比べて良くありません。

Then, in order to improve the film quality, O_3 has been employed to assist reaction. The atmosphere of reactor in the FCMCVD system is changed and ruled by the evaporated gases such as H₂O and CH₃OH because the solvents are water (H₂O) and/or methanol (CH₃OH) in the actual experiment. Oxygen radicals (O·) generated from O₃ in the reactor. Then, hydroxyl radicals (·OH) are generated based on O·. So, the reaction are is very high active state because the reactor is occupied by activated oxygen sources such as O₃, O·, and ·OH.

The O_3 line was connected to near side of the reactor. O_3 was assisted at a concentration of about 5000 ppm in 1.5 L/min air with an O_3 generator.

そこで、薄膜の品質を向上させるため、オゾンを用いて反応を支援使用途考えました。 ミストCVDでは、水やメタノールを溶媒として用いているため、反応場の雰囲気はそれ らのガスに支配されています。オゾンは、熱により容易に酸素ラジカルを生み出し、そ の酸素ラジカルは、ヒドロキシラジカルを生成します。反応場はO₃, O, OHに支配され、 非常に活性状態になっていると想定されます。

オゾンは反応器の近くから導入し、1.5L/minの空気から、5000 ppmのO₃を供給しました。

This is the AFM image of AlO_x thin films grown with O_3 assistance. As with AlO_x thin films grown under Air, comparatively smooth thin film was obtained at every temperature, the roughness was smoothing with decreasing temperature, and pin hole was not seen from AFM image.

Airで作製したアルミナ薄膜と同様、どの温度領域でも比較的平坦な薄膜が得られ、 低温ほどラフネスが良く、ピンホールなども見られませんでした。Airで作製したアル ミナ薄膜より平坦な薄膜が得られていることが分かります。

The breakdown field and the dielectric constant are shown in these figures. The AlO_x thin films grown with O_3 assistance exhibited the breakdown field of about 8 MV/cm and the static dielectric constant of about 7 at temperatures above 340°C. Also, the dramatic decrease of breakdown field and dynamic dielectric constant can be seen in the AlOx thin films grown at temperatures below 330°C.

- 破壊電界強度と誘電率をこちらに示します。340℃以上で8 MV/cmを超える破壊電界 強度、7程度の静的誘電率が見られました。しかも、破壊電界強度と動的誘電率の急激 な減少は、Airで作製したAlO_{*}薄膜の時は、400℃以下で観測されましたが、O3を支援し て作製したAlO_{*}薄膜のでは、340℃以下で観測されました。

FT-IR spectra are shown in this figure. And a broad peak based on OH bonding is not obtained in AlO_x thin films grown above 350°C with O_3 assistance in FT-IR measurement.

こちらは、FT-IRの測定結果です。こちらのグラフから分かるように、OH基由来の ピークが350℃では観測されていないことが分かります。

This is summary. Each property of AlO_x thin films is improved with O_3 assistance. The breakdown field (E_{BD}) increases from 6 to 8, the static dielectric constant (κ) increases from 6 to 7, and RMS decreases from 1.2 to 0.3 nm. Moreover, O_3 contributes to lower the growth temperature of higher quality AlO_x thin films, from 400 to 340°C.

空気条件とオゾン条件を比較すると、オゾンを供給する事で、破壊電界強度は、6から8へと向上し、静的誘電率も、6から7へと向上した。ラフネスも、よりスムースになっている事が分かる。また、オゾンは高品質なAlO_x薄膜をつくれる温度を、400℃から340℃まで低下させることに寄与した。

On the other hand, the OH bonding included in the AlO_x thin film can be suggested as one factor for the degradation of the breakdown field and the dynamic dielectric constant. It is thought that O_3 can clean up the residual of OH bonding and dangling bond in AlO_x thin film, because of high reaction ability of O_3 .

FI-IR測定結果からも、OH基の存在が、破壊電界強度及び動的誘電率の急激な減少の 理由だと考えられます。O3支援時には、O3の高い反応活性により、薄膜中へのOH基や 未結合手の残余が無くなると考えられる。

Finally, conclusions. AlO_x thin film can be grown by mist CVD. The AlO_x thin films grown under Air condition exhibited E_{BD} of about 6 MV/cm, κ of about 6, RMS of 1.2 nm at temperatures above 400°C. The AlO_x thin films grown under O₃ condition exhibited E_{BD} of about 8 MV/cm, κ of about 7, RMS of 0.3 nm at temperatures above 400°C. It is suggested that the residual OH bonding and dangling bond in AlO_x thin film caused the degradation of the E_{BD} and κ at low temperatures. O₃ contributes to lower the growth temperature of higher quality AlO_x thin films from 400°C to 340°C because of the high reaction ability of O₃.

最後にまとめです。

今回我々は、ミストCVD法でアルミナ薄膜を作製しました。

空気下で作製したAlOx薄膜は、破壊電界強度6 MV/cm、静的誘電率6、ラフネス1 nm程度であった。

オゾンを供給して作製したAlOx薄膜は、破壊電界強度8 MV/cm、静的誘電率7、ラフネス0.2 nm程度であった。

低温での破壊電界強度や静的誘電率などの特性悪化の原因は薄膜中へのOH基の 残余や未結合手の残余が考えられる。

オゾンはその活性力の高さの為に、高品質なAIO_x薄膜をつくれる温度を、400℃から 340℃まで低下させることができた。